

Radar Systems Engineering Lecture 5 Propagation through the Atmosphere

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

IEEE New Hampshire Section

IEEE AES Society

Radar Systems Course 1 Propagation 1/1/2010

Block Diagram of Radar System

Introduction and Motivation

Almost all radar systems operate through the atmosphere and near the Earth's surface

Effect of the Atmosphere on Radar Performance

- Attenuation of radar beam
- Refraction (bend) of the radar beam as it passes through the atmosphere
- "Multipath" effect
 - Reflection of energy from the lower part of the radar beam off of the earth's surface
 - Result is an interference effect
- Over the horizon diffraction of the radar beam over ground obstacles
- **Propagation effects vary with:**
 - Changing atmospheric conditions and wavelength
 - Temporal and geographical variations

A Multiplicity of Atmospheric and Geographic Parameters

- Atmospheric parameters vary with altitude
 - Index of refraction
 - Rain rate
 - Air density and humidity
 - Fog/cloud water content
- Earth's surface
 - Curvature of the earth
 - Surface material (sea / land)
 - Surface roughness (waves, mountains / flat, vegetation)

- Atmospheric refraction
- Over-the-horizon diffraction
- Atmospheric attenuation
- Ionospheric propagation

- Two waves can interfere constructively or destructively
- Resulting field strength depends only on relative amplitude and phase of the two waves
 - Radar voltage can range from 0-2 times single wave
 - Radar power is proportional to (voltage)² for 0-4 times the power
 - Interference operates both on outbound and return trips for 0-16 times the power

Courtesy of MIT Lincoln Laboratory Used with Permission

- Reflection from the Earth's surface results in interference of the direct radar signal with the signal reflected off of the surface
 - Total propagation effect expressed by propagation factor |F|⁴
- Surface reflection coefficient (Γ) determines relative signal amplitudes
 - Dependent on: surface material, roughness, polarization, frequency
 - Close to 1 for smooth ocean, close to 0 for rough land
- Relative phase determined by path length difference and phase shift on reflection
 - Dependent on: height, range and frequency

Courtesy of MIT Lincoln Laboratory Used with Permission

IEEE AES Society

Radar

The (reflected path) - (directed path) : $\Delta = 2h_{R} \sin \theta$

• For small
$$\theta$$
, $\sin \theta = \frac{h_R + h_t}{R}$, $\Delta = \frac{2 h_R h_t}{R}$

The phase difference due to path length difference is:

$$\phi = \left(\frac{2\pi}{\lambda}\right) \left(\frac{2h_Rh_t}{R}\right)$$
• The total phase difference is $\phi = \left(\frac{2\pi}{\lambda}\right) \left(\frac{2h_Rh_t}{R}\right) + \pi$
Radar Systems Course 11
Propagation 1/1/2010
Reflection at surface
IEEE New Hampshire Section IEEE AES Society

Propagation over a Plane Earth (continued)

• The sum of two signals, each of unity amplitude, but with phase difference:

$$\eta = \sqrt{\left(\left(1 + \cos\phi\right)^2 + \left(\sin\phi\right)^2\right)} = \sqrt{2\left(1 + \cos\left(\frac{4\pi h_R h_t}{\lambda R}\right)\right)}$$

• The one way power ratio is:

$$\eta_{1WAY}^{2} = 2 \left[1 - \cos \left(\frac{4 \pi h_{R} h_{t}}{\lambda R} \right) \right] = 4 \sin^{2} \left(\frac{2 \pi h_{R} h_{t}}{\lambda R} \right)$$

• The two way power ratio is:

• Maxima occur when
$$() = (2n+1)\frac{\pi}{2}$$
, minima when $() = n\pi$

• Multipath Maxima and Minima:

Maxima
$$\frac{4h_Rh_t}{\lambda R} = 2n + 1$$
 Minima $\frac{2h_Rh_t}{\lambda R} = n$

- Multipath causes elevation coverage to be broken up into a lobed structure
- A target located at the maximum of a lobe will be detected as far as twice the free-space detection range
- At other angles the detection range will be less than free space and in a null no echo signal will be received

Lobing density increases with increasing radar frequency

- Reflection coefficient from a round earth is less than that from a flat earth
- Propagation calculations with a round earth are somewhat more complicated
 - Computer programs exist to perform this straightforward but tedious task
 - Algebra is worked out in detail in Blake (Reference 4)
- As with a flat earth, with a round earth lobing structure will occur

Adapted from Blake, Reference 4

Courtesy of US Navy

USS Abraham Lincoln

- Radar Parameters
 - Average Power 13 kW
 - Frequency 850-942 MHz
 - Antenna Gain 29 dB Rotation Rate 6RPM
 - Target σ = 1 m²
 Swerling Case I
 - P_D 0.5
 - PFA 10⁻⁶
 - Antenna Height 75 ft
 - Sea State 3

Vertical Coverage of SPS-49 Surveillance Radar

- Reflection from the Earth's surface
- Atmospheric refraction
 - Over-the-horizon diffraction
 - Atmospheric attenuation
 - Ionospheric propagation

- The index of refraction, \boldsymbol{n} , and refractivity, \boldsymbol{N} , are measures of the velocity of propagation of electromagnetic waves

$$n = \frac{V_{Vacuum}}{V_{Air}}$$
 $N = (n-1)10^{+6}$ $n = 1.000335$ $N = 335$

• The index of refraction depends on a number of environmental quantities:

$$N = \frac{77.6}{T} \left[p + \frac{4810e}{T} \right]$$

p = barometric pressure (mbar) e = partial pressure of water in (mbar) T = absolute temperature, (°K) (1 mm Hg = 1.3332 mbar)

> IEEE New Hampshire Section 1 IEEE AES Society

Adapted from Skolnik, Reference 1

Refraction of Radar Beams

- The index of refraction (refractivity) decreases with increasing altitude
- Velocity of propagation increases with altitude
- The decrease is usually well modeled by an exponential
- Radar beam to bends downward due to decreasing index of refraction

Earth's Radius Modified to Account for Refraction Effects

- Atmospheric refraction can be accounted for by replacing the actual Earth radius a, in calculations, by an equivalent earth radius ka and assuming straight line propagation
 - A typical value for k is 4/3 (It varies from 0.5 to 6)
 - Average propagation is referred to as a "4/3 Earth"
- The distance, d, to the horizon can be calculated using simple geometry as: h = height of radar above ground

$$d = \sqrt{2kah}$$

Assuming 4/3 earth: $d(nmi) = 1.23\sqrt{h(ft)}$

$$d(km) = 4.12\sqrt{h(m)}$$

- Using Snell's law, it can be derived that $k = \frac{1}{1 + a(dn/dh)}$
- Non standard propagation occurs when k not equal to 4/3
- Refractivity gradient for different propagation

	Condition	N units per km
_	Sub-refraction	positive gradient
_	No refraction	0
_	Standard refraction	-39
_	Normal refraction (4/3 earth radius)	0 to -79
_	Super-refraction	-79 to -157
-	Trapping (ducting)	-157 to -œ

- Anomalous propagation occurs when effective earth radius is greater than 2. When dn/dh is greater than -1.57 x 10⁻⁷ m⁻¹
- This non-standard propagation of electromagnetic waves is called anomalous propagation, superrefraction, trapping, or ducting.
 - Radar ranges with ducted propagation are greatly extended.
 - Extended ranges during ducting conditions means that ground clutter will be present at greater ranges
 - Holes in radar coverage can occur.
- Often caused by temperature inversion
 - Temperature usually decreases with altitude
 - Under certain conditions, a warm air layer is on top of a cooler layer
 - Typical duct thickness ~few hundred meters

 $N = \frac{77.6}{T} \left[p + \frac{4810e}{T} \right]$

- Ducting :
 - Can cause gaps in elevation coverage of radar
 - Can allow low altitude aircraft detection at greater ranges
 - Increase the backscatter from the ground

Adapted from Skolnik, Reference 1

- Balloon borne radiosondes are often used to measure water vapor pressure, atmospheric pressure and temperature as a function of height above the ground to analyze anomalous propagation
- When ducting occurs, significant amounts of the radar's energy can become trapped in these "ducts"
 - These ducts may be near the surface or elevated
 - "Leaky" waveguide model for ducting phenomena gives good results

Low frequency cutoff for propagation

- Climactic conditions such as temperature inversions can cause ducting conditions to last for long periods in certain geographic areas.
 - Southern California coast near San Diego
 - The Persian Gulf

50 km range rings

Courtesy of MIT Lincoln Laboratory Used with Permission

Ducting conditions can extend horizon to extreme ranges

Radar Systems Course 28 Propagation 1/1/2010

- Reflection from the Earth's surface
- Atmospheric refraction
- Over-the-horizon diffraction
 - Atmospheric attenuation
 - Ionospheric propagation

- Interference region
 - Located within line of sight radar
 - Ray optics assumed
- Diffraction region
 - Below radar line of sight
 - Direct solution to Maxwell's Equations must be used
 - Signals are severely attenuated
- Intermediate region
 - Interpolation used

Adapted from Blake, Reference 2

Diffraction

Tsunami Diffracting around Peninsula

Courtesy of NOAA / PMEL / Center for Tsunami Research. See animation at http://nctr.pmel.noaa.gov/animations/Aonae.all.mpg

- Radar waves are diffracted around the curved Earth just as light is diffracted by a straight edge and ocean waves are bent by an obstacle (peninsula)
- Web reference for excellent water wave photographic example:
 - <u>http://upload.wikimedia.org/wikipedia/commons/b/b5/Water_diffraction.jpg</u>
- The ability of radar to propagate beyond the horizon depends upon frequency (the lower the better) and radar height
- For over the horizon detection, significant radar power is necessary to overcome the loss caused by diffraction

Propagation 1/1/2010

- The expression relates, for a ray grazing the earth at the horizon, (radar beam tangential to earth): the maximum range that a radar at height, h_R, may detect a target at height, h_t
- For targets below the horizon, there are always a target detection loss, due to diffraction effects, that may vary from 10 to > 30 dB, resulting in a signal to noise ratio below that of the free space value.

Frequency Dependence of Combined Diffraction and Multipath Effects

- Diffraction Effects
 - Favors lower frequencies
 - Difficult at any frequency

- Reflection from the Earth's surface
- Atmospheric refraction
- Over-the-horizon diffraction
- ➡ Atmospheric attenuation
 - Ionospheric propagation

Theoretical Values of Atmospheric Attenuation Due to H₂O and O₂

- P The attenuation associated with the H_2O and O_2 resonances dominate the attenuation at short wavelengths
 - Attenuation is negligible at long wavelengths
 - It is significant in the microwave band
 - It imposes severe limits at millimeter wave bands
- At wavelengths at or below 3 cm (X-Band), clear air attenuation is a major issue in radar analysis
- At millimeter wavelengths and above, radars operate in atmospheric "windows".

Adapted from Skolnik, Reference 1

Atmospheric Attenuation in the Troposphere

Propagation 1/1/2010

Adapted from Blake in Reference 1 Range to target (nmi)

Attenuation 4.4 dB at 0° elevation vs. 1.0 dB at 5°

Atmospheric Attenuation at 10 GHz

• Attenuation: 6.6 dB at 10 GHz vs. 4.4 dB at 3 GHz

Atmospheric Attenuation at 10 GHz

 For targets in the atmosphere, radar equation calculations require a iterative approach to determine correct value of the atmospheric attenuation loss

Radar Systems Course 42 Propagation 1/1/2010

Figure by MIT OCW.

Radar performance at high frequencies is highly weather dependent

Radar Range - Height - Angle Chart (Normal Atmosphere)

- Reflection from the Earth's surface
- Atmospheric refraction
- Over-the-horizon diffraction
- Atmospheric attenuation
- Ionospheric propagation

Example Relocatable OTH Radar (ROTHR) Transmit Array

Typically operate at 10 – 80 m wavelengths (3.5 – 30 MHz)
OTH Radars can detect aircraft and ships at very long ranges (~ 2000 miles)

Frequency Spectrum (HF and Microwave Bands)

Electromagnetic Propagation at High Frequencies (HF) is very different than at Microwave Frequencies

Adapted from Headrick and Skolnik in Reference 7

Ionospheric Propagation (How it Works- What are the Issues)

- Sky wave OTH radars:
 - Refract (bend) the radar beam in the ionosphere,
 - Reflecting back to earth,
 - Scattering it off the target, and finally,
 - Reflect the target echo back to the radar
- The performance of OTH radars vitally depends on the physical characteristics of the ionosphere, its stability and its predictability

Adapted from Headrick and Skolnik in Reference 7

Physics of OTH Radar Propagation

Over the Horizon Propagation Enabled by Ionospheric Refraction

Radar Systems Course 49 Propagation 1/1/2010

Electron Concentration (N/cm³)

Plasma Frequency
$$f_p = \frac{1}{2\pi} \sqrt{\frac{Ne^2}{m\epsilon_0}}$$

Maximum Usable Frequency (MUF) Key for oblique incidence

$$\mathbf{MUF} = \mathbf{f}_{\mathbf{p}}\mathbf{secant}\left(\boldsymbol{\theta}_{\mathbf{inc}}\right)$$

MUF = Maximum Usable Frequen

• Ultraviolet radiation from the sun is the principal agent responsible for the ionization in the upper ionosphere

Courtesy of NASA

• Within each week, of each month, of each year there is significant variation in the Sun Spot number (solar flux), and thus, the electron density in the ionosphere

1.602+17

1.462+17

1.338+17

9,705+10

8.002+19 7.202+19

6.003+16 4.763+16

8.603+16 2.2532+16

1.002+10

Quiet Ionosphere UT = 12h 00m

Electron Column Density 100Km to 400Km (m-2) UT = 12h 00m

Ionospheric Storm UT = 12h 00m

Electron Column Density 100Km to 400Km (m-2)

"Courtesy of Windows to the Universe, http://www.windows.ucar.edu"

60

IEEE New Hampshire Section IEEE AES Society

170

160

Flare Emissions and Ionospheric Effects

- OTH radar detection performance is dependent on many variables and is difficult to predict because of the variability and difficulty, of reliably predicting the characteristics of the ionosphere
 - Diurnal variations
 - Seasonal variations
 - Sun Spot cycle
 - Solar flares, coronal mass ejections, etc. from the sun
- Because OTH radars can detect targets at great ranges they have very large antennas and very high power transmitters

- The atmosphere can have a significant effect on radar performance
 - Attenuation and diffraction of radar beam
 - Refracting of the beam as it passes through the atmosphere Causes angle measurement errors
 - Radar signal strength can vary significantly due to multipath effects

Reflections from the ground interfering with the main radar beam

- Frequencies from 3 to 30 MHz can be used to propagate radar signals over the horizon
 Via refraction by the ionosphere
- The above effects vary with the wavelength of the radar, geographic and varying atmospheric conditions

- 1. Skolnik, M., Introduction to Radar Systems, McGraw-Hill, New York, NY, 3rd Edition, 2001
- 2. Skolnik, M., *Radar Handbook*, New York, NY, McGraw-Hill, 2rd Edition, 1990
- 3. Skolnik, M., *Radar Handbook*, New York, NY, McGraw-Hill, 3rd Edition, 2008
- 4. Blake, L. V. *Radar Range-Performance Analysis*, Munro, Silver Springs, MD,1991
- 5. Bougust, Jr., A. J., *Radar and the Atmosphere*, Artech House, Inc., Norwood, MA,1989
- 6. Meeks, M. L. ,*Radar Propagation at Low Altitudes*, Artech House, Inc., Norwood, MA,1982.
- 7. Headrick, J. M. and Skolnik, M. I., "Over-the-Horizon Radar in the HF Band", IEEE Proceedings, Vol. 62, No. 6, June 1974, pp 664-673

- From Reference 1, Skolnik, M., Introduction to Radar Systems, 3rd Edition, 2001
 - Problem 8-1
 - Problem 8.8
 - Problem 8-11

- Dr. Robert J. Galejs
- Dr. Curt W Davis, III